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Maximum likelihood estimation techniques 
for concurrent flaw subpopulations 
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Failure of structural materials is often caused by the presence of two or more types of 
defect subpopulations. The maximum likelihood estimation technique for evaluating the 
Weibull parameters of these underlying subpopulations in the case of known fracture 
origin is presented. The maximum likelihood estimation equations are derived, and solved 
by means of nonlinear programming. The estimators obtained therefrom are tested for 
both accuracy and consistency against a series of simulation runs. For data sets containing 
a relatively small sample size, the advantage of the method of maximum likelihood over 
two established nonparametric techniques is demonstrated. 

1. Introduction 
The strength of structural materials is often 
determined by two or more types of inherent 
subpopulations of defects. Each type of defect is 
assumed to possess its own intrinsic distributional 
properties, and the ultimate breaking strength 
is determined not only from these individual 
distributions, but also from their interaction with 
one another. For purposes of discussion let us 
assume there are only two types of defect sub- 
populations, types A and B. In the concurrent 

case, defects of both types are assumed present 
in each test specimen, with the same definition 
extending to the general setting of more than two 
subpopulations. 

The Weibull distribution, cf. Weibull [1], 
Mann etal. [2], Jayatilaka and Trustrum [3], 
Yrustrum and Jayatilaka [4], and Jeryan [5], has 
found great favour in describing the individual 
defect subpopulations, primarily because of its 
flexibility and simplicity. Versions with both two 
and three parameters are commonly used. Recent 
literature has focused on the need for a rigorous 
technique of estimating the parameters of the 
underlying Weibull subpopulations in the con- 
current case. The purpose of this paper is to 
investigate the maximum likelihood technique 
for estimating Weibull parameters of the con- 
current case. 

Our model then depends on the following 
three assumptions: 

1. two (and only two) types of defect sub- 
populations, types A and B, are present in each 
test specimen; 

2. each defect subpopulation possesses a two- 
parameter Weibull distribution; 

3. the type of defect that causes failure in a test 
specimen can always be determined by a post- 
mortem analysis. 
It is important to note that the technique dis- 
cussed in this paper considers the censored infor- 
mation present in each sample. That is, if a 
specimen fails by a defect of type A, it obviously 
did not fail by a defect of type B at the breaking 
strength. This information must be observed in 
estimating the Weibull parameters for both type 
A and B defects. 

We begin with a brief review of the existing 
literature on the problem. Graphical techniques 
for determining the underlying Weibull para. 
meters are discussed in Johnson [6] and Easler 
etal. [7]. These techniques plot the strength 
data using a finear transformation of coordinates. 
In most concurrent cases this will generate a 
curve with a distinct "knee" in it that enables 
one to generate estimates of both the scale and 
shape parameters of both subpopulations. While 
the method illustrates the concept of competing 
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Weibull subpopulations quite well, properties of 
the estimators such as accuracy and consistency 
are difficult to verify. 

In Nelson [8], the technique of hazard plotting 
is introduced. The technique depends on the fact 
that the composite hazard rate for two concurrent 
subpopulations is simply the sum of the individual 
hazard rates. To estimate values for the Weibull 
parameters from a given set of data, one ranks 
the data and works wittr hazard sums. Linear 
regression is employed, as outlined in Nelson [8], 
with failure strengths transformed to be used as 
the dependent variable. 

In Jakus etal. [9], an approach known as 
mean order ranking is used to estimate the Weibull 
parameters in the concurrent case. The procedure 
is adapted from Johnson [10]. The method 
attempts to take into account all of the censored 
information available in the sample by reranking 
the separated data. For each censored data point, 
a new increment in the ranking function is cal- 
culated based on the previous ranking and the 
number of data points beyond the present cen- 
sored set. These new increments are, in turn, used 
to determine a new ranking function for each 
subpopulation. The Weibull parameters are esti- 
mated for each subpopulation by linear regres- 
sion after an appropriate transformation of 
coordinates. 

In this paper we propose the maximum likeli- 
hood estimation (MLE) technique to estimate 
the Weibull parameters for a bimodal, concurrent 
strength distribution. MLE is a wholly parametric 
technique, depending explicitly on the form of 
the Weibull model to generate its estimates. This 
is not true of hazard plotting and mean order 
ranking, where nonparametric ranking and regres- 
sion techniques are used to generate estimates. 
Divorcing a portion of the estimation procedure 
from the model whose parameters are being 
estimated fails to use all of the relevant infor- 
mation. This can be particularly critical when 
there is little information available. In the final 
section we compare the performance of MLE, 
hazard plotting, and mean order ranking for 
small sample sizes. 

2. Maximum likelihood estimation 
techniques 

To develop our MLE model, we must first intro- 
duce some notation. Each Weibull subpopulation 
has a probability density function 

fi(x) = --mi(xlmi-'si \si--] exp [ (--xtmi 1 -  \si ] ] 
x~>O, i = A,B (1) 

and survival probability function 

( x )  = 1 - F i ( x )  = e x p  - 

x~>0, i = A,B (2) 

where Fi(x ) is the cumulative failure probability 
associated with type i defect. The combined 
survival probability function is 

F(x) = YA(x)FB(x) 

{xT'_(xT" : exp [--\sA] \s.] ] 
x/> 0 (3) 

It is assumed that a sample of n items is ana- 
lysed, with n i of the samples falling from a type i 
defect, i = A , B ;  and nA+nB=n .  Let x } = j t h  
ordered observation of a failure caused by a type i 
defect, ] = 1 . . . . .  ni, i = A, B, and xj = jth ordered 
observation of the combined failure data, j = 
1 , . . .  ,n. 

The maximum likelihood technique is based 
on the following reasoning: the likelihood func- 
tion for a specified model is a function of the 
parameters of the model and the values of the 
sample. When the likelihood function is evaluated 
at the values in the sample, it represents the joint 
probability of that particular outcome being 
realized as a function of the model parameters. 
Naturally we want to maximize this joint prob- 
ability with respect to these parameters, which 
obtains the maximum likelihood estimators for 
these parameters. In general maximum likelihood 
estimators possess many desirable statistical 
properties. For example, the maximum likelihood 
estimators are often a function of the minimum 
variance unbiased estimators. For further details, 
see Mann etal. [2] or Mendenhall etal. [11]. 
Depending on the form of the model, MLE poses 
a problem of variable mathematical tractability. 
The details of the technique for the case of con- 
current Weibull subpopulation follow. 

The likelihood function, L, for this model is 

L -- L(mi,s i ,x l l , . . . ,x ln)  
n A  n B 

j = l  = 
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Consider those terms treating an xp .  Their contri- 
bution to the likelihood f unc t ion , fA(x~)FB(xp) ,  
is the joint probability of X A E (x~, x) A + Axe) ,  
X B ~>x~, where X i is a generic random variable 
from subpopulation i, i = A, B. The sample values 
x~ are treated in the same fashion. Multiplying 
the two products together we obtain the likeli- 
hood function. 

It is easier to work with the natural logarithm 
of the likelihood function, which of course takes 
on its maximum value at the same point. Taking 
the natural logarithm and substituting into 
Equations 1 and 2, we obtain 

lnL = nAln rna + ( m A - - 1 ) ~  In 
~=1 V A /  

+ 
i=1 \ s B /  j 

+ n B l n  rnB + ( m B - - 1 ) Y .  in 
i=1 \ s ~ ]  

- -  (4) 
j= l  \ s s /  \sA,  

The four partial derivatives, one with respect to 
each parameter to be estimated, are 

OlnL - - n i m  i +m i ~ (xjtmi 
- i = A , B  

OSi Si Si ]=1 \Si] 
(s) 

~mi mi i=~ \si 

() _ x j  m~ In xj 
j= l  \Si] -~i i = A, B 

(6) 

The standard solution procedure is to set each of 
the four partial derivatives (Equatons 5, 6) equal 
to zero. Finding this solution by traditional 
methods such as iterative search is not feasible, 
so a nonlinear programming technique was em- 
ployed. Before we discuss the details of this 
solution procedure, we review the role of the 
sample. No ranking functions or linear regression 
are employed. Rather the data from each sub- 
population is simply put into Equations 5 and 6 
which are, in turn, solved to yield estimators of 
the Weibull parameters. 

3. Solution procedure 
The nonlinear programming approach reformu- 
lates the problem with a nonlinear objective 
function and a set of linear constraints. Formally 
stated, the problem becomes: 

Find mA, SA, roB, S B to: 
minimize 

�9 i i (O :-- ~)(mi, s i , x  i . . . .  , Xn) 

i=~B [\am, ] \ as, ] ] (7) 

subject to 

rnA >~O, sA >~O, m B ~ O ,  sB>~O (8) 

The objective function (Equation 7) is the sum 
of the squares of the four partial derivatives of 
the natural logarithm of the likelihood function. 
By minimizing this function we are deriving the 
individual derivatives to a value of zero�9 It should 
be pointed out that with the application of this 
technique to the problem, the solutions generated 
values of the objective function on the order of 
10 -l~ , ensuring in fact that for all practical pur- 
poses we were actually solving Equations 5 and 6. 
The constraints of Equation 8 are needed to 
ensure that the maximum likelihood estimators 
found by the technique are, in fact, non-negative 
as they indeed must be. 

The nonlinear programming algorithm used 
was Marquardt's algorithm, cf. Kuester and Mize 
[12]. The algorithm is a gradient search technique 
which involves a compromise between the methods 
of steepest descent and the traditional Gauss-- 
Newton in selecting the next step size in the 
search. The interested user need not be familiar 
with the details of the nonlinear programming 
technique, since a prepared code written in 
Fortran IV is available from the authors. For most 
data sets from relatively low shape parameters 
the algorithm will converge in a reasonable num- 
ber of iterations, yielding accurate estimators 
with excellent consistency. In a relatively few 
test cases the algorithm did not converge within 
the time limits of the existing computing facilities. 
This problem is frequently encountered in search- 
method algorithms when the size of the convex 
(concave) neighbourhood Surrounding the opti- 
mum is relatively small, as in the case here. 

To circumvent this problem, a transformation 
of the data was utilized. This transformation 
depends on the fact that a non-negative power 
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T A B L E  I S u m m a x y  o f  s imula t ion  p a r a m e t e r s  a nd  m a x i m u m  l ikel ihood es t ima tors .  To t a l  sample  size = 50 ,  t en  

simulation r u n s  

Simula t ion  S u b p o p u l a t i o n  sizes M a x i m u m  

p a r a m e t e r s  es t imates  l ike l ihood 

es t imates :  

m e a n  

Standard  dev ia t ion  o f  e s t ima to r s  

S imula ted  Th eo re t i c a l  

s A = 400  The o re t i c a l  422 .26  

s B = 600  n A = 4 2 . 6 4 ,  n B = 7 .36  6 3 3 . 8 9  

m A = 3 S imula ted  3 .3554  

m B = 5 n A = 4 1 . 3 0 ,  n B -=- 8 .70 4 . 7 4 2 6  

s A = 600  The o re t i c a l  5 9 6 . 6 2  

s B = 600 n A = 2 6 . 9 3 , n  B = 23.07 5 8 2 . 0 0  

m A = 2 S imu la t ed  2 .1099  

m B = 4 n A = 26 .50 ,  n B = 23 .50  4 . 1 6 4 6  

s A = 300 Theore t i ca l  295 .28  

s B = 300 n A = 2 7 . 6 4 , n  B = 22.36 301 .28  

m A = 6 S imula ted  6 . 4 4 6 4  

rn B = 13.5 n A = 2 9 . 5 0 , n  B = 20 .50  13 .713  

s A = 350 Theore t i ca l  346 .75  

s B = 300 n A = 12 .58 ,  n B = 37 .42  300 .41  

rn A = 7 S imula t ed  8 .6033  

rn B = 14.5 n A = 13 .00 ,  n B = 37 .00  15 .811  

19.146 19 .566  

107 .35  72 .27  

0 .2963  0 .4 0 7 0 6  

0 .6931  1 .286 

6 1 . 2 5 8  5 8 2 5 7  

4 4 . 2 5 0  28 .72  

0 . 2 6 4 9  0 .3843  

0 .7815  0 .628  

11 .998  8.495 

5 .0205  4 .9 5 0  

1 .0504  1 .0205  

2 .9787  2 .1408  

2 6 . 6 4 2  21 .586  

3 . 4 5 3 2  3 .118  

2 .7304  2 .5619  

1 .2468  1 .9647  

of  a Weibull random variable is also a Weibull 
random variable. To see this, let X have a Weibull 
density with parameters (m, s). Let Y = X 2 . Then 

fv(y) = fx(y '/2) 00; 

x e x p [ - - ( y l / 2 1 m ]  ( 2 ~ )  
[ \ s , j  

; [ m ' l [ y ~  "'- j  

where rn' ~- m/2, s' = s 2 . A similar result holds for 
Y = X r, for any r >t 1.0. 

To utilize this development, consider a data 
set for which the algorithm did not converge. 
Square all data values, retaining the same fracture 
origins, and find estimators m' ,  s' for this trans- 
formed data. Then re-invert these estimators 
using m = 2m', s = (s') 1/2 . This yields the correct 
estimators for the original data set. This squaring 
transformation works for almost all cases; if not, 
a cubing transformation is employed. By means 
of  several logical-if statements, this transformation 
of  data was incorporated into the authors' Fortran 
IV code. These transformations enabled us to 
achieve convergence in all of  the simulation runs 
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used to examine the performance of  the maximum 
likelihood technique. 

4. Performance of technique 
To test the accuracy and consistency of  the MLE 
technique discussed in this paper, a number of 
Monte Carlo simulation runs were performed 
using samples of  size n = 50. The fracture strength 
for each of  the 50 specimens in a given sample 
population was calculated by choosing a pair of  
random fracture strengths, one from distribution 
A and one from B. If  the fracture strength from A 
was less than that from B, the specimen was 
designated as failing from flaw type A at that 
fracture strength. Conversely, if fracture strength 
B was less than A, the specimen was designated 
as failing at a flaw of type B. For each set of 
Weibull parameters, ten runs were executed using 
the same random number seed across techniques. 
This enabled us to measure both the accuracy and 
consistency of  each technique. Accuracy was mea- 
sured by the proximity of  the estimated parameter 
values to the true values used to generate the simu- 
lation data, and consistency was measured by the 
size of  the standard deviations of  the ten runs. A 
summary of  the actual and estimated parameter 
values for four combinations of  shape and scale 
parameters is listed in Table I. Good agreement in 
all cases is evident. 

The simulated and theoretical subpopulation 
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sample sizes n A and nB are also listed in Table I. 
The simulated sample sizes are obtained by aver- 
aging the values obtained from the ten runs for 
each set of Weibull parameters. The theoretical 
sample sizes are obtained by calculating the 
probability that the random variable XA is less 
than X B. 

e(xA < = fo  P(x  > x)e 

x [XAE(X ,X  + dx) ]dx  

= f ;  exp--I~-~B ] ] 

x \SA] exp ~A dx 

The integration is performed numerically using 
Simpson's approximation. The theoretical n A is 
then calculated by multiplying this probability 
by n = 50, and n B =  5 0 - - n  a .  In all cases there 
was excellent agreement between the simulated 
and theoretical subpopulation sample sizes. 

Fig. 1 compares a predicted concurrent strength 
distribution based on Equation 3 using the four 
Weibull parameters found with the MLE technique 
in one of the computer simulation trials with the 
50 fracture strengths generated in that trial. The 
type of fracture origin for each specimen is identi- 
fied in the figure by its associated symbol. The 
dashed lines in the figure describe the individual 
failure probabilities when the distributions are 
present one at a time. The two concurrent flaw 
populations were chosen so that there is a tend- 

Figure I Predicted concurrent strength distribution. 

ency for fracture origins from flaw type A to 
predominate at lower stresses and for origins of 
type B to predominate at higher stresses. The 
agreement between the estimated concurrent 
strength distribution and the 50 generated data 
points is good. The differences observed are a 
result of sampling errors inherent in this moder- 
ate number of specimens and the small errors in 
the estimated Weibull parameters. These differ- 
ences also emphasize that caution should be used 
in interpreting minor kinks and knees in real 
experimental data. It is interesting to note that 
concurrent distributions result in a single knee 
in the curve with a positive curvature (knees with 
a negative curvature cannot occur with concurrent 
flaw distributions). At high fracture stresses, the 
concurrent distribution asymptotically approaches 
the behaviour of the strength distribution with the 
larger Weibull modulus and at low stresses that of 
the strength distribution with the smaller Weibull 
modulus. 

The consistency of our estimators is measured 
by both the simulated and theoretical standard 
deviations of the estimators (see Table I). The 
simulated value is obtained by calculating the 
standard deviation of the ten simulation runs for 
each parameter for each of the four sets of para- 
meter values. To obtain the approximate theo- 
retical value, we need to calculate the asymptotic 
variance-covariance matrix, cf. Rao [13], the 
diagonal elements of which yield the asymptotic 
variance of the four estimators. To calculate this 
matrix we need to invert the negative of the 
expected value of the information matrix. In the 
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T A B L E I I Comparison of estimation techniques for small sample sizes. Total sample size = 5, ten simulation runs 

Simulation Mean order Hazard plotting Maximum likelihood 
parameters ranking estimates estimates estimates 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

s A = 300 281.92 14.854 274.11 16.543 294.23 12.010 
s B = 300 296.30 10.637 289.20 8.5361 292.67 9.3276 
m A = 6 13.892 11.377 10.791 8.3477 9.8296 7.4258 
m B = 13.5 3.7088 81.599 30.599 65.618 18.970 6.5643 

concurrent case the information matrix takes a 
block diagonal form 

[ ,o1 I =  
i 

where the elements o f /k ,  k = A, B, are given by 

[ O21nL ~21nL ] 

Ik i ~21nL ~21nL | 
L a J 

We note that the block diagonal structure of I 

allows us to invert each o f -  E(IA) and --E(IB) 

separately. 
In many situations it is impractical to expect 

a large number of data points on fracture strengths 

to be available. For this reason we ran small 

sample (n = 5) simulations for the MLE, hazard 

plotting, and mean order ranking techniques. The 

results are listed in Table II. Although all three 

techniques were satisfactory in estimating the 
scale parameters, only MLE gave reasonable 
estimates of the shape parameters. The breakdown 
of the nonparametric techniques in estimating the 
Weibull parameters of a bimodal concurrent 
emphasizes the weaknesses inherent in such 

techniques. 
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